

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 49 (2008) 3805–3809

One-pot three-component synthesis of pyrazoles through a tandem coupling-cyclocondensation sequence

Hai-Ling Liu, Huan-Feng Jiang *, Min Zhang, Wen-Juan Yao, Qiu-Hua Zhu, Zhou Tang

The College of Chemistry, South China University of Technology, 381 Wushan Road, Guangzhou 510640, China

Received 21 January 2008; revised 26 March 2008; accepted 28 March 2008 Available online 8 April 2008

Abstract

An efficient and general one-pot procedure for the synthesis of pyrazoles from acid chlorides, terminal alkynes and hydrazines was described via a coupling and cyclocondensation sequence. Acid chlorides coupled with terminal alkynes to give α, β -unsaturated ynones, and in situ converted into pyrazoles by the cycloaddition of hydrazines. The desired pyrazoles were obtained with 15–85% isolated yields. $© 2008$ Published by Elsevier Ltd.

Tandem reactions refer to two reactions operating in succession in the same reaction vessel.^{[1](#page-2-0)} Nowadays, tandem reactions have emerged as powerful tools to meet the demands of modern organic chemistry due to the synthetic efficiency, molecular diversity, low production costs, etc.^{[2](#page-3-0)} Perhaps the most synthetically useful version of tandem processes is to construct interesting cyclic compounds, a large family of the natural products with significant biological activities, synthetic intermediates with wide-ranging utility for drug candidates and fine chemicals. 3 In this context, we have recently developed tandem sequences for the synthesis of polysubstituted tetrahydropyrimidines or 2,5 dihydro-1,3-oxazin-6-ones. 4 Encouraged by these results, we are interested in investigating similar tandem reactions to broaden N-containing heterocycles.

Pyrazoles and its derivatives, which are a large class of Ncontaining heterocycles, possess important biological and pharmaceutical activities,^{[5](#page-3-0)} and are also useful synthetic building blocks and metal ligands in organic chemistry.^{6,7} Therefore, a number of synthetic methods have been developed for theconstruction of this skeleton, including the cyclization of $1,3$ -diketones with hydrazine, $1,3$ -dipolar cycloaddition of diazoalkanes with alkynes,^{[9](#page-3-0)} the reaction of hydrazines with α , β -unsaturated ketones^{[10](#page-3-0)} and several

0040-4039/\$ - see front matter © 2008 Published by Elsevier Ltd. doi:10.1016/j.tetlet.2008.03.153

other methods.^{[11](#page-3-0)} Recently, great interest is focused on onepot construction of heteroaromatic compounds, such as oxadiazoles, 12 pyrimidines, 13 N-sulfonyl pyrroles, indoles and carbazoles, ^{[14](#page-3-0)} furan, ^{[15](#page-3-0)} ethyl 3-hydroxyquinoxaline-2-carboxylates, 16 16 16 pyrano- and furanoquinolines, 17 and pyrazoles. Of these heterocycles, one-pot synthesis of pyrazoles has been developed based on these intermediates generated in situ including 1,3-diketones, $8a$ diazo compounds^{[9](#page-3-0)} and ynones.^{[18](#page-3-0)} Unfortunately, some of the reagents used in these cases are toxic, sensitive to air, difficult to obtain and dangerous.

Thereby, the construction of pyrazoles with simple, cheap, safe and easily available organic molecules as the components in one-pot would be more facile and efficient. Many methods exist for the synthesis of ynones from the coupling of acid chlorides and terminal alkynes.^{[19](#page-3-0)} Herein, we report an efficient and general one-pot three-component procedure for the construction of pyrazoles via a tandem coupling-cyclocondensation sequence. Ynones were synthesized directly from acid chlorides and terminal alkynes, and were then converted in situ into pyrazoles by the cycloaddition of hydrazines.

Our first attempt at this one-pot transformation employed 2-furancarbonyl chloride (1a) as a substrate coupled with phenylacetylene (2a) and hydrazine hydrate (3a) ([Table 1\)](#page-1-0). Using CuI as a catalyst, the desired product 3 furan-5-phenyl-1H-pyrazole $(4aaa)$ was obtained in only 25% isolated yield. The use of $PdCl_2(PPh_3)_2/CuI^{19c}$ could

Corresponding author. Tel.: $+86$ 20 22236518; fax: $+86$ 20 87112906. E-mail address: jianghf@scut.edu.cn (H.-F. Jiang).

Table 1

Optimization of conditions for the synthesis of pyrazole $4a^a$

^a Reaction conditions: **1a** (1.5 mmol), **2a** (1.0 mmol), $PdCl_2(PPh_3)_2$ (0.01 mmol), CuI (0.03 mmol) and Et₃N (2.0 mmol) in THF (5 mL) at room temperature for 2 h. Then **3a** and consolvent (2 mL) were added at room tem temperature for 2 h. Then 3a and consolvent (2 mL) were added at room temperature for 16 h. $\frac{b}{n}$ Isolated yields.

 c The reaction was carried out with CuI (0.05 mmol) as a catalyst for 12 h.

Table 2 One-pot synthesis of pyrazoles 4[a](#page-2-0)

Reaction conditions: 1 (1.5 mmol), 2 (1.0 mmol), PdCl₂(PPh₃)₂ (0.01 mmol), CuI (0.03 mmol) and Et₃N (2.0 mmol) in THF (5 mL) at room temperature for 2 h. Then, 3 (3.0 mmol) and CH3CN (2 mL) were added at room temperature for 16 h. ^b Isolated yields.

 \cdot 1 mL saturated aqueous Na₂CO₃ was added at the second step.

greatly increase the yield of 4aaa ([Table 1](#page-1-0), entry 2). The amount of hydrazine hydrate (3a) affected the reaction to some extent. It was found that 3 equiv of 0.5 M hydrazine hydrate resulted in 4aaa in 58% yield [\(Table 1,](#page-1-0) entry 3). In order to improve the conversion, a range of cosolvents were screened for the reaction of ynone with hydrazine, and acetonitrile was found to offer the highest yield [\(Table](#page-1-0) [1,](#page-1-0) entries 4–6).

The results in [Table 1](#page-1-0) revealed that 2-furancarbonyl chloride (1a) (1.5 mmol) smoothly reacted with phenylacetylene $(2a)$ (1.0 mmol) in the presence of 1 mol % of Pd $(PPh_3)_2Cl_2$, 3 mol % of CuI and 2 mmol of triethylamine for 2 h in THF. Then, 3 mmol of 0.5 M hydrazine hydrate (3a) and acetonitrile (2 mL) were added and stirred for an additional 16 h, which gave pyrazole (4aaa) in 73% isolated yield [\(Table 1,](#page-1-0) entry 6).

Under the given optimized reaction conditions, we first conducted this one-pot tandem reaction of different terminal alkynes 2 with benzoyl chloride (1b) and hydrazine $3.^{20}$ $3.^{20}$ $3.^{20}$ As can be seen from [Table 2,](#page-1-0) the corresponding pyrazoles 4baa to 4bac were obtained in 15–76% isolated yields. The use of aliphatic terminal alkyne (2b) led to 4bba with only 15% yield. The reactivity of phenylhydrazine (3b) was much lower than that of hydrazine hydrate, and the addition of $Na₂CO₃$ could improve the yield of 4bab. Subsequently, various acid chlorides 1 were investigated by coupling with 2a and 3a. The desired products 4caa to 4faa were obtained in 51–85% isolated yields.

The coupling of acid chloride and terminal alkyne could give ynone which may undergo dehydration reaction with hydrazine and subsequent 1,4-addition process to afford the desired pyrazole.

Encouraged by the successful one-pot procedure to the synthesis of the pyrazoles, we attempted this method to

the one-pot three-component synthesis of pyrimidine (Scheme 1). It was found that pyrimidine 6ba was obtained

in 42% isolated yield. 21 In conclusion, we have developed a convenient one-pot synthesis of pyrazoles via a three-component couplingcyclocondensation sequence catalyzed by $Pd(PPh_3)_{2}Cl_2$ / CuI. The protocol offers several advantages such as the use of commercially available materials, easy isolation, simple workup procedures and compatibility to various substrates making it an appealing alternative to construct heteroaromatic ring.

Acknowledgements

The authors thank the National Natural Science Foundation of China (Nos. 20772034, 20625205, 20572027 and 20332030) and the Guangdong Natural Science Foundation (No. 07118070) for financial support of this work.

References and notes

1. For examples, see: (a) Clark, D. A.; Kulkarni, A. A.; Kalbarczyk, K.; Schertzer, B.; Diver, S. T. J. Am. Chem. Soc. 2006, 128, 15632; (b) Kraus, G. A.; Kim, J. Org. Lett. 2004, 6, 3115; (c) Curini, M.; Epifano, F.; Genovese, S.; Marcotullio, M. C.; Rosati, O. Org. Lett.

2005, 7, 5747; (d) Oh, K. Org. Lett. 2007, 9, 2973; (e) Fustero, S.; Jimenez, D.; Sanchez-Rosello, M.; del Pozo, C. J. Am. Chem. Soc. 2007, 129, 6700.

- 2. (a) Chen, X. H.; Xu, X. Y.; Liu, H.; Cun, L. F.; Gong, L. Z. J. Am. Chem. Soc. 2006, 128, 14802; (b) Pinto, A.; Neuville, L.; Zhu, J. Angew. Chem., Int. Ed. 2007, 46, 3291; (c) Dong, C. G.; Hu, Q. S. Angew. Chem., Int. Ed. 2006, 45, 2289.
- 3. (a) Barluenga, J.; Diéguez, A.; Fernández, A.; Rodríguez, F.; Faňanás, F. Angew. Chem., Int. Ed. 2006, 45, 2091; (b) Miyamoto, H.; Okawa, Y.; Nakazaki, A.; Kobayashi, S. Angew. Chem., Int. Ed. 2006, 45, 2274.
- 4. (a) Zhang, M.; Jiang, H. F.; Liu, H. L.; Zhu, Q. H. Org. Lett. 2007, 9, 4111; (b) Zhang, M.; Jiang, H. F.; Wang, A. Z. Synlett 2007, 3214.
- 5. For examples, see: (a) Doe, I. S.; Smith, J.; Roe, P. J. Am. Chem. Soc. 1968, 90, 8234; (b) Ache, H. J. Angew. Chem., Int. Ed. Engl. 1989, 28, 1; (c) Qiao, J. X.; Cheng, X.; Smallheer, J. M.; Galemmo, R. A.; Drummond, S.; Pinto, D. J. P.; Cheney, D. L.; He, K.; Wong, P. C.; Luettgen, J. M.; Knabb, R. M.; Wexler, R. R.; Lam, P. Y. S. Bioorg. Med. Chem. Lett. 2007, 17, 1432; (d) Singh, P.; Paul, K.; Holzer, W. Bioorg. Med. Chem. 2006, 14, 5061; (e) Lamberth, C. Heterocycles 2007, 71, 1467.
- 6. For recent examples, see: (a) Kawatsura, M.; Aburatani, S.; Uenishi, J. Tetrahedron 2007, 63, 4172; (b) Attanasi, O. A.; Berretta, S.; De rescentini, L.; Favi, G.; Filippone, P.; Giorgi, G.; Lillini, S.; Mantellini, F. Tetrahedron Lett. 2007, 48, 2449; (c) Zhu, L.; Cheng, L.; Zhang, Y.; Xie, R.; You, J. J. Org. Chem. 2007, 72, 2737; (d) Cottineau, B.; Chenault, J. Synlett 2002, 769.
- 7. For recent examples, see: (a) Burling, S.; Field, L. D.; Messerle, B. A.; Rumble, S. L. Organometallics 2007, 26, 4335; (b) Kufelnicki, A.; Wozniczka, M.; Checinska, L.; Miernicka, M.; Budzisz, E. Polyhedron 2007, 26, 2589; (c) Kealey, S.; Long, N. J.; Miller, P. W.; White, A. J. P.; Hitchcock, P. B.; Gee, A. Dalton Trans. 2007, 2823; (d) Ovejero, P.; Mayoral, M. J.; Cano, M.; Lagunas, M. C. J. Organomet. Chem. 2007, 692, 1690.
- 8. (a) Heller, S. T.; Natarajan, S. R. Org. Lett. 2006, 8, 2675; (b) Kost, A. N.; Grandberg, I. I. Adv. Heterocycl. Chem. 1966, 6, 347; (c) Wang, Z.-X.; Qin, H.-L. Green Chem. 2004, 6, 90; (d) Xie, F.; Cheng, G.; Hu, Y. J. Comb. Chem. 2006, 8, 286; (e) Armstrong, A.; Jones, L. H.; Knight, J. D.; Kelsey, R. D. Org. Lett. 2005, 7, 713.
- 9. Aggarwal, V. K.; de Vicente, J.; Bonnert, R. V. J. Org. Chem. 2003, 68, 5381.
- 10. (a) Grotjahn, D. B.; Van, S.; Combs, D.; Lev, D. A.; Schneider, C.; Rideout, M.; Meyer, C.; Hernandez, G.; Mejorado, L. J. Org. Chem. 2002, 67, 9200; (b) Bishop, B. C.; Brands, K. M. J.; Gibb, A. D.; Kennedy, D. J. Synthesis 2004, 43; (c) Bhat, B. A.; Puri, S. C. Synth. Commun. 2005, 1135.
- 11. (a) Wang, X.-J.; Tan, J.; Grozinger, K. Tetrahedron Lett. 2000, 41, 4713; (b) Matsumura, N.; Kunugihara, A.; Yoneda, S. Tetrahedron Lett. 1983, 24, 3239.
- 12. Kaboudin, B.; Saadati, F. Tetrahedron Lett. 2007, 48, 2829.
- 13. (a) Karpov, A. S.; Merkul, E.; Rominger, F.; Müller, T. J. J. Angew. Chem., Int. Ed. 2005, 44, 6951; (b) Kiselyov, A. S. Tetrahedron Lett. 2005, 46, 1663.
- 14. Abid, M.; Teixeira, L.; Toeroek, B. Tetrahedron Lett. 2007, 48, 4047.
- 15. Lee, Y. R.; Suk, J. Y.; Kim, B. S. Org. Lett. 2000, 2, 1387.
- 16. Haldar, P.; Dutta, B.; Guin, J.; Ray, J. K. Tetrahedron Lett. 2007, 48, 5855.
- 17. Kamble, V. T.; Ekhe, V. R.; Joshi, N. S.; Biradar, A. V. Synlett 2007, 1379.
- 18. (a) Mohamed Ahmed, M. S.; Kobayashi, K.; Mori, A. Org. Lett. 2005, 7, 4487; (b) Dang, T. T.; Dang, T. T.; Langer, P. Tetrahedron Lett. 2007, 48, 3591.
- 19. (a) Chen, L.; Li, C.-J. Org. Lett. 2004, 6, 3151; (b) Chowdhury, C.; Kundu, N. G. Tetrahedron Lett. 1996, 37, 7323; (c) Cox, R. J.; Ritson, D. J.; Dane, T. A.; Berge, J.; Charmant, J. P. H.; Kantacha, A. Chem. Commun. 2005, 1037; (d) Palimkar, S. S.; Kumar, P. H.; Jogdand, N. R.; Daniel, T.; Lahoti, R. J.; Srinivasan, K. V. Tetrahedron Lett. 2006,

47, 5527; (e) Alonso, D. A.; Najera, C.; Pacheco, M. C. J. Org. Chem. 2004, 69, 1615.

20. A typical procedure for the preparation of compound 4. To a 25 mL round-bottomed flask, $PdCl₂(PPh₃)₂$ (0.01 mmol), CuI (0.03 mmol), $Et₃N$ (2.0 mmol) acid chloride 1 (1.5 mmol) and terminal alkyne 2 (1.0 mmol) were added in THF (5 mL) at room temperature for 2 h under N_2 . Then hydrazine 3 (3.0 mmol) and CH₃CN (2 mL) were added and reacted for an additional 16 h. Then the reaction mixture was diluted with water (10 mL) and extracted with dichloromethane $(2 \times 20 \text{ mL})$. The combined organic layers were dried with sodium sulfate, concentrated to dryness and isolated by preparative TLC or column chromatography to obtain pure products 4. 3-Furan-2-yl-5phenyl-1H-pyrazole (4aaa): ¹H NMR (CDCl₃, 400 MHz) δ : 6.48 (q, $J = 1.6$ Hz, 1H), 6.67 (d, $J = 2.4$ Hz, 1H), 6.78 (s, 1H), 7.35–7.46 (m, 4H), 7.70–7.72 (m, 2H); IR (KBr) v: 3392 br s, 2946, 2837, 1609, 1552, 1460, 1115, 1026 cm⁻¹; MS (70 eV) m/z (%): 210 (M⁺⁺, 100), 181, 152, 127, 105, 79, 77. 3,5-Diphenyl-1H-pyrazole (4baa): ¹H NMR (CDCl₃, 400 MHz) δ : 6.86 (s, 1H), 7.33–7.45 (m, 6H), 7.74 (d, $J = 7.2$ Hz, 4H); IR (KBr) v: 3096, 2921, 1639, 1565, 1457, 1084 cm⁻¹; MS (70 eV) m/z (%): 220 (M⁺⁺, 100), 191, 165, 110, 77, 51, 32. 5-Hexyl-3-phenyl-1H*pyrazole* (4bba): ¹H NMR (CDCl₃, 400 MHz) δ : 0.87 (t, J = 6.8 Hz, 3H), 1.27–1.37 (m, 6H), 1.63–1.68 (m, 2H), 2.65 (t, $J = 7.6$ Hz, 2H), 5.40–6.20 (br s, 1H), 6.36 (s, 1H), 7.29–7.40 (m, 3H); 7.70–7.72 (m, 2H); ¹³C NMR (CDCl₃, 400 MHz) δ : 150.0, 147.9, 132.7, 128.6, 127.7, 125.7, 100.9, 31.5, 29.2, 28.9, 26.4, 22.5, 14.0; IR (KBr) v: 3249, 2928, 2855, 1642, 1569, 1458, 1264 cm⁻¹; MS (70 eV) m/z (%): 228 (M⁺⁺), 213, 199, 171, 158 (100), 145, 128, 104, 91; Anal. Calcd for $C_{15}H_{20}N_2$: C, 78.90; H, 8.83; N, 12.27. Found: C, 79.15; H, 8.60; N, 12.32. 3- **Phenyl-5-p-tolyl-1H** -pyrazole (4bca): ¹H NMR (CDCl₃, 400 MHz) δ : 2.39 (s, 3H), 6.82 (s, 1H), 7.23–7.45 (m, 5H), 7.61 (d, $J = 8$ Hz, 2H); 7.74 (d, $J = 4$ Hz, 2H); ¹³C NMR (CDCl₃, 400 MHz) δ : 147.0, 138.3, 129.6, 128.9, 128.2, 125.5, 99.9, 21.3; IR (KBr) v: 2957, 2923, 1647, 1459, 1097 cm⁻¹; MS (70 eV) m/z (%): 234 (M⁺⁺, 100), 219, 205, 189, 178, 165, 152, 130, 117, 104, 89, 77,63, 51. 5-Naphthalen-2-yl-3 phenyl-1H-pyrazole (4bda): ¹H NMR (CDCl₃, 400 MHz) δ : 6.86 (s, 1H), $7.31 - 7.52$ (m, 6H), 7.57 (d, $J = 6.4$ Hz, 1H), $7.76 - 7.89$ (m, 4H), 8.28 (d, $J = 8$ Hz, 1H); ¹³C NMR (CDCl₃, 400 MHz) δ : 149.3, 146.6, 133.8, 131.8, 131.3, 129.0, 128.8, 128.4, 128.1, 127.1, 126.7, 125.7, 125.5, 125.3, 103.9; IR (KBr) v: 3190 br s, 3056, 2961, 1645, 1565, 1460, 1269, 1171 cm⁻¹; MS (70 eV) m/z (%): 270 (M⁺⁺, 100), 241, 215, 191, 167, 152, 135, 119, 104, 95, 77, 63, 51; Anal. Calcd for C₁₉H₁₄N₂: C, 84.42; H, 5.22; N, 10.36. Found: C, 84.38; H, 5.50; N, 10.53. 1,3,5- Triphenyl-1H-pyrazole (4bab): 1 H NMR (CDCl₃, 400 MHz) δ : 6.81 (s, 1H), 7.27–7.42 (m, 13H), 7.90 (dd, $J_1 = 7.2$ Hz, $J_2 = 1.2$ Hz, 2H); IR (KBr) v: 3057, 2924, 1598, 1549, 1494, 1364 cm⁻¹; MS (70 eV) m/z $(%): 296 (M⁺, 100), 268, 217, 192, 180, 165, 147, 134, 116, 77, 64, 51,$ 32. 2-(3,5-Diphenyl-1H-pyrazol-1-yl)ethanol(4bac): 1 H NMR (CDCl₃, 400 MHz) δ : 4.03 (t, J = 4.0 Hz, 2H), 4.26 (t, J = 4.0 Hz, 2H), 6.63 (s, 1H), 7.25–7.50 (m, 8H), 7.83 (d, $J_1 = 8.0$ Hz, 2H); ¹³C NMR (CDCl₃) d: 151.0, 145.6, 132.9, 130.2, 129.0, 128.8, 128.7, 127.9, 125.6, 103.3, 62.2, 50.9; IR (KBr) v: 3063, 2926, 1640, 1549, 1461, 1071 cm⁻¹; MS (70 eV) m/z $(\%)$: 264 (M⁺⁺), 233 (100), 220, 206, 191, 179, 165, 130, 117, 104, 91, 77, 57; Anal. Calcd for C₁₇H₁₆N₂O: C, 77.25; H, 6.10; N, 10.60. Found: C, 77.32; H, 6.14; N, 10.55. 5-Phenyl-3-p-tolyl-1H*pyrazole* (4caa): ¹H NMR (CDCl₃, 400 MHz) δ : 2.38 (s, 3H), 6.81 (s, 1H), 7.22–7.44 (m, 4H), 7.59–7.74 (m, 5H); IR (KBr) v: 3184 br s, 2922, 1651, 1540, 1506, 1400, 1295 cm⁻¹; MS (70 eV) m/z (%): 234 (M-+, 100), 219, 205, 189, 178, 165, 152, 130, 117, 104, 89, 77, 63, 51, 32. $3-(4-Nitro-phenyl)-5-phenyl-1H-pyrazole$ (4daa): 1 H NMR (CDCl₃, 400 MHz) δ : 7.36–7.40 (t, $J = 8.0$ Hz, 4H), 7.81 (s, 2H), 8.11 (d, $J = 4.0$ Hz, 2H); 8.29 (d, $J = 8.0$ Hz, 2H), 13.7 (s, 1H); ¹³C NMR (CDCl₃) δ: 146.9, 129.5, 128.9, 126.3, 125.6, 124.7, 101.6; IR (KBr) v: 3190, 2920, 1644, 1515, 1457, 1330, 1299 cm⁻¹; MS (70 eV) m/z (%): 265 (M-⁺ , 100), 249, 235, 219, 207, 191, 178, 165, 152, 139, 116, 104, 89, 77, 63, 51, 30. 5-Phenyl-3-thiophen-2-yl-1H-pyrazole (4eaa): ¹H NMR (CDCl₃, 400 MHz) δ : 6.68 (s, 1H), 6.99–7.01 (m, 1H), 7.21–7.34 (m, 5H), 7.64 (d, J = 7.2 Hz, 2H); ¹³C NMR (CDCl₃) δ : 145.4, 135.0, 130.3, 128.9, 128.4, 127.5, 125.6, 124.8, 124.1, 100.2; IR (KBr) v: 3096,

2950, 2842, 1646, 1457, 1052 cm⁻¹; MS (70 eV) m/z (%): 226 (M⁺⁺, 100), 197, 171, 165, 113, 77, 40; Anal. Calcd for C₁₃H₁₀N₂S:C, 69.00; H, 4.45; N, 12.38. Found: C, 69.22; H, 4.28; N, 12.57. 3-Cyclohexyl-5 phenyl-1H-pyrazole (4faa): ¹H NMR (CDCl₃, 400 MHz) δ : 1.24–1.48 (m, 6H), 1.81–2.05 (m, 2H), 2.65–2.69 (m, 2H), 3.30–3.36 (m, 1H), 6.36 (s, 1H), 7.25–7.40 (m, 3H), 7.72–7.74 (m, 2H); ¹³C NMR (CDCl₃) d: 152.7, 150.0, 132.8, 128.7, 127.8, 125.6, 99.4, 35.9, 32.9, 26.1, 26.0; IR (KBr) v: 3007, 2927, 2854, 1647, 1568, 1459, 1029 cm⁻¹; MS (70 eV) m/z (%): 226 (M⁺⁺, 100), 211, 197, 185, 171, 158, 145, 128, 115, 104, 91, 77, 67, 55; Anal. Calcd for C₁₅H₁₈N₂: C, 79.61; H, 8.02; N, 12.38. Found: C, 79.55; H, 8.28; N, 12.59.

21. A typical procedure for the preparation of compound $6ba$. To a 25 mL round-bottomed flask, PdCl₂(PPh₃)₂ (0.01 mmol), CuI (0.03 mmol), Et_3N (2.0 mmol), benzoyl chloride (1.5 mmol) and phenylacetylene (1.0 mmol) were added in THF (5 mL) at room temperature for 2 h under N₂. Then 5 (2.0 mmol), CH₃CN (2 mL) and Na_2CO_3 (2.5 mmol) were added and refluxed for 24 h. Then the reaction mixture was diluted with water (10 mL) and extracted with dichloromethane $(2 \times 20 \text{ m})$. The combined organic layers were dried with sodium sulfate, concentrated to dryness and isolated by preparative TLC to obtain pure products 6ba. 2-Methyl-4,6-diphenylpyrimidine (6ba): ¹H NMR (CDCl₃, 400 MHz) δ : 2.86 (s, 3H), $7.50-7.52$ (m, 6H), 7.88 (s, 1H), $8.10-8.13$ (m, 4H); IR (KBr) v: 3061, 2955, 2924, 2853, 1574, 1532, 1459, 1368 cm⁻¹; MS (70 eV) m/z (%): 246 (M⁺⁺, 100), 236, 205, 195, 167, 152, 123, 102, 98, 76, 63, 51, 42.